Motivation
Die Ergebnisse aus Isabella erzeugen erste Verbesserungen der Ausgangssituation im Bereich der Umfuhren von Fahrzeugen und zeigen weitere Ansatzpunkte für zusätzliches Verbesserungspotenzial auf. Diese sollen aufgegriffen werden, um die logistische Leistungsfähigkeit des Steuerungsalgorithmus weiter zu verbessern und situationsspezifisch zu optimieren. Des Weiteren bietet die Ausweitung der Anwendbarkeit auf die Umschlagprozesse an den Verkehrsträgern großes Potenzial für die Gesamtperformanz, was im Rahmen dieses Projektes ausgeschöpft werden soll. Dabei darf nicht außer Acht gelassen werden, dass die Einführung der Lösungsansätze mit durchgreifenden Veränderungen der Arbeitssituationen für die Mitarbeiter:innen einhergeht und diese zur besseren Akzeptanz der finalen Lösung in den Prozess mit eingebunden werden müssen.
Ziel
Ziel ist es, die Parametrisierung der Steuerung zu optimieren und den Ansatz bezüglich multikriterieller Optimierung zu erweitern, sodass die Optimierungsleistung unter Berücksichtigung der vorherrschenden Situation (Terminalfüllgrad, Fahrzeugmix, Personalverfügbarkeit etc.) weiter verbessert werden kann. Weiteres Ziel ist die systematische Ausweitung des Steuerungsalgorithmus auf die Prozesse zur Be- und Entladung der Verkehrsträger (Schiff, Zug und LKW) und die Erstellung einer virtuellen Schulungsanwendung, die die arbeits- und organisationspsychologischen Aspekte der Arbeitsprozessumgestaltung aufgreift, die Umstellung für die Mitarbeiter:innen erleichtert und schlussendlich die Akzeptanz für die neue Lösung sicherstellt.
Vorgehen
Über eine ereignisdiskrete Simulation und moderne Methoden der Sensitivitätsanalyse und der künstlichen Intelligenz soll die Performanz des Steuerungsalgorithmus unter unterschiedlichen Rahmenbedingungen und Parametereinstellungen untersucht und dadurch Rückschlüsse zwischen Leistung, Terminalsituation und Parametereinstellungen gezogen werden. Darüber hinaus wird es schlussendich ermöglicht, die Steuerung auf die jeweilige Terminalsituation einzustellen und die Planbarkeit der operativen Fahrprozesse zu erhöhen. Des Weiteren sollen neue Datenanalysemethoden und KI-Ansätze angewendet werden, um aus operativ gewonnenen Daten relevante Prozesskennzahlen wie z. B. Zeitdauer einzelner Prozessschritte oder Fahrwegauslastungen systematisch abzuleiten. Für die Erweiterung der Anwendbarkeit der Steuerung auf die Verkehrsträger wird ein Konzept für den Datenempfang in Schiffen und Bahnwaggons entworfen. Hierbei werden Ad-hoc- und Mesh-Netzwerke in Kombination mit geeigneten Funkstandards wie WLAN, Bluetooth oder LoRa in Betracht gezogen.
Förderung durch BMVI
Diese Projekte könnten Sie auch interessieren

MEXOT




Intelligente Arbeitsergonomie mittels sensorischer Exoskelette und autonomen Transportsystemen für die erweiterte Mensch-Technik-Interaktion im Automobilumschlag

WAIS




Mit WAIS hat die HEC eine Softwarelösung für den Bereich Wartung und Instandsetzung von Maschinen und Anlagen entwickelt.


PräVISION




Methodenentwicklung zur präventiven Steigerung der Arbeitssicherheit an Flurförderzeugen mit Umsetzung eines Assistenzsystems durch Fusion und Analyse von 2D- und 3D-Bilddaten